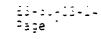
BEGINNING

OF INOSE


(ENVIRONMENTAL INSURANCE LITIGATION MATERIALS)

DO NOT DESTROY OR REMOVE WITHOUT SPECIFIC AUTHORIZATION FROM THE LAW DEPARTMENT. CALL 314-694-6060 OR 314-694-6032 FOR

DOCUMENTON. ADDITIONAL INFORMATION.

COLLECTION

SOIL FROM THE
SITE ILLINOIS
SAMPLES
TOOSE DOCS

MEASUREMENT OF SELECTED CHEMICALS IN SOIL FROM THE DEAD CREEK SITE ILLINOIS EPA SPLIT SAMPLES

INTRODUCTION

Following media reports and subsequent Illinois EPA concern about hazardous chemicals at the Dead Creek site near Sauget, Illinois, personnel from Monsanto's W. G. Krummrich Plant and the Illinois EPA sampled several areas at the site and split the samples. The Monsanto samples were submitted to Environmental Sciences for characterization. Monsanto's concerns about the site arose from reports of high levels of polychlorinated biphenyls and phosphorus, as well as the reported presence of other chemicals, and the proximity of the site to the Krummrich Plant. These samples were taken to give both Monsanto and the Illinois EPA opportunity to confirm the reported levels found in earlier samplings by the Illinois EPA. In addition to polychlorinated biphenyls and phosphorus, several other "families" of chemicals were measured to try to identify or eliminate possible sources of the chemicals at the site.

SUMMARY

Three sediment samples and one well water sample were taken on October 2, 1980 by Monsanto and IEPA representatives. The Monsanto samples were transferred to our laboratory and analyzed for polychlorinated biphenyls, elemental phosphorus, chlorobenzenes, chlorophenols, phosphate esters, and metals (including arsenic and inorganic phosphorus). No elemental phosphorus was detected in any of the samples, which implies that phosphorus is not responsible for the "smoking earth" reported at the site. In addition, no organic chemicals were detected above the detection limits in the well water sample. However, varying amounts of the organic chemicals and metals were measured in the soil samples. One sample contained higher levels of polychlorinated biphenyls and other organic compounds, while the other two samples contained higher levels of metals. The results clearly indicate non-uniform contamination at the Dead Creek site.

DETAILS

Sampling

The three soil and one water samples were collected by Monsanto W. G. Krummrich plant personnel and IEPA personnel and split at the site. The Monsanto samples were transferred to the Environmental Analysis Group. In our laboratory, the sediment samples were handled according to Standard Operating Procedure (SOP) EAN-80-SOP-6, Homogenizing, Subdividing and Preserving Sediment Samples. Portions of the soil samples were transferred to Applied Sciences for the determination of metals and arsenic.

MCA 00 23926

Protected Material: Monsanto Insurance Coverage Litigation

Analytical Procedures

The three soil samples were analyzed for a variety of chemicals using established procedures or methods developed and validated for the chemicals of interest in soil. The following list tabulates the methods which were used.

Analyte	Method No.	Title
Polychlorinated Biphenyls	ES-80-M-28	Determination of Polychlorinated Biphenyls in Soil and Sediment
Chlorinated Benzenes	ES-80-M-29	Determination of Chlorinated Benzenes in Soil and Sediment
Chlorinated Phenols	ES-80-M-30	Determination of Chlorinated Phenols in Soil and Sediment
Elemental Phosphorus (P ₄)	ES-80-M-24	Determination of Elemental Phosphorus (P4) in Soil and Sediment
Phosphate Esters	ES-80-M-5	Determination of Group I Compounds in Sediments
Metals	Ref. 1, 2	Inductively Coupled Plasma (ICP) Method for Trace Element Analysis of Water and Wastes
Arsenic	Ref. 3	Methods for Chemical Analysis of Water and Wastes-Arsenic

All determinations were carried out in strict accordance with these methods, except that the polychlorinated biphenyls, chlorinated benzenes and phosphate esters were measured in extracts from acidified samples to facilitate determination of chlorinated phenols in the same extracts.

The water sample was extracted in accordance with SOP EAN-30-SOP-19, Extraction of Semivolatile Organic Compounds from Water. The levels of polychlorinated biphenyls and phosphorus were determined using the analytical conditions specified in the respective method for soils listed above.

Results

The analytical results for this study are tabulated in Tables I-VI. Each table contains the results for all of the samples for a specific group of compounds. All results for the soils are in ppm (parts per million or ug/g). The results for the water sample are in ppb (parts per billion, ng/g). In general, the stated detection limits are the lowest level at which a given measurement was validated. Levels which are apparently real, but which are below the validated detection limit are presented in parentheses.

Quality Assurance

The quality assurance results (i.e., recovery and precision evaluations) for these samples have been compiled along with those of similar samples analyzed concurrently. These results are reported in Special Study ES-80-SS-27, Measurement of Selected Chemicals in Soil from the Dead Creek Site - Quality Assurance.

REFERENCES

- 1. Methods for Chemical Analysis of Waters and Wastes, EPA-600/4-79-020, page: Metals-6, Section 4.1.3.
- 2. Federal Register, Vol. 44, No. 233, December 3, 1979.
- Methods for Chemical Analysis of Waters and Wastes, EPA-600/4-79-020, Method 206-Arsenic, pages: 206.2-1 to 206.5-2.

ANALYTE	ES LOG NO. DATE SAMPLED LOCATION	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100303	OIL AND WATER SAMPLES (Water) 0100307 10/2/80 Well at Theresa's Greenhouse, 101 Walnut, Sauget,1L.	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles,MO.
PCB's (Cl ₂ to Cl ₆ Homologs)		13,000	240	45	ND < 1 ppb	ND < 1
P _i		ND < 1	ND < 1	ND < 1	ND < 1 ppb	ND < 1

TABLE II. PPM LEVELS OF CHLOROBENZENES IN DEAD CREEK SOIL SAMPLES

ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100303	0041701 4/16/80 Soil Blank Mo. Bottoms St. Charles, MO.
MONOCHLOROBENZENE	(0.9)	ND < 1	(0.3)	ND < 1
P-DICHLOROBENZENE	370	(0.3)	(0.4)	ND < 1
O-DICHLOROBENZENE	80	(0.6)	1.0	ND < 1
TRICHLOROBENZENES (3)	. 85	1.6	(0.7)	ND < 1
TETRACHLOROBENZENES (3)	6.1	2.4	(0.4)	ND < 1
PENTACHLOROBENZENE	ND < 1	ND < 1	ND < 1	ND < 1
HEXACHLOROBENZENE	ND < 1	1.2	ND < 1	ND < 1
NITROCHLOROBENZENES (O-, P-)	120	ND < 1	ND < 1	ND < 1

^() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N >2.5 and can be considered semi-quantitative.

TABLE 111. PFM LEVELS OF CHLOROPHENOLS IN DEAD CREEK SOIL SAMPLES

ES LOG NO. DATE SAMPLED LOCATION	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100303	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles.MO.
O-CHLOROPHENOL	3.7	ND < 1	ND < 1	ND < 1
P-CHLOROPHENOL	6.6	ND < 1	(0.9)	ND < 1
2,4-D1CHLOROPHENOL	. 1.2	ND < 1	ND < 1	ND < 1
PENTACHLOROPHENOL	130	ND < 1	1.8	ND < 1

Protected Material: Monsanto insurance Coverage Litigation

^() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N >2.5 and can be considered semi-quantitative.

TABLE IV. PPM L	EVELS OF	PHOSPHATE	ESTERS	IN DEAD	CREEK	SOIL	SAMPLES
-----------------	----------	-----------	--------	---------	-------	------	---------

ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100303	0041701 4/16/80 Soil Blank Mo. Bottoms St. Charles, MO.
DIBUTYLPHENYL PHOSPHATE	330	ND < 1	(0.8)	ND < 1
BUTYLDIPHENYL PHOSPHATE	ND < 1	ND < 1	(0.8)	ND < 1
TRIPHENYL PHOSPHATE	. 2600	ND < 1	ND < 1	ND < 1
2-ETHYLHEXYLDIPHENYL PHOSPHATE	ND < 1	ND < 1	2,2	ND < 1
ISODECYLDIPHENYL PHOSPHATE	ND < 1	ND < 1	ND < 1	ND < 1
T-BUTYLPHENYLD1PHENYL PHOSPHATE	28	ND < 1	MD < 1	ND < 1
DI-T-BUTYLPHENYLDIPHENYL PHOSPHATE	ND < 1	ND < 1	ND < 1	ND < 1
NONYLPHENYL DIPHENYL PHOSPHATE	ND < 1	ND < 1	ND < 1	MD < 1
CUMYLPHENYLD1PHENYL PHOSPHATE	3,7	ND < 1	ND < 1	ND < 1

Monsanto insurance Coverage Littigation

^() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N > 2.5 and can be considered semi-quantitative.

0023933

ZINC

TO TRU AAN

ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100303	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles,MO
STLYER	ND <1	42	29	ND < 1
ALUMINUM	1400	5100	5300	5600
BARTUM	770	1200	1300	130
BERYLLIUM	ND < 1	ND < 1	ND < }	ND < 1
BORON	28	160	100	27
CALCIUM	8500	9200	6200	4600
CADMIUM	5.1	60	55	3.9
COBALT	15	180	120	33
CHROMIUM	. 25	110	240	19
COPPER	460	28,000	18,000	19
IRON	4700	53,000	30,000	9900
MAGNESIUM	460	2200	2000	2300
MANGANESE	29	170	110	510
MOLYBDE num	6.1	92	68	11
SODIUM	400	540	410	320
NICKEL	110	2000	1700	39
LEAD	180	2000	1600	50
PHOSPHORUS	2500	13,000	9400	610
ANT 1 MONY	13	240	160	29
SILICON	73	150	89	110
lin	18	260	220	18
STRONTTUM	35	230	110	17
lITANIUM	32	110	80	37
VANADIUM	34	140	130	130

280

010

32,000

18,000

56

TABLE VI. SUMMARY OF PHOSPHORUS	CONTENT (PPM) OF DEAD CO	REEK SOIL SAMPLES		
ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0100301 10/2/80 40 yds south of Queeny Ave. Center of Creek	0100303 10/2/80 268 paces south of 0100301	0100305 10/2/80 270 paces south of 0100305	0041701 4/16/80 Soil Blank Mo. Bottoms St,Charles,MO.
P - ELEMENTAL, By GC/MS	ND < 1	ND < 1	ND < 1	ND < 1
P-INORGANIC, By ICP	2500	13,000	9400	610
TOTAL PHOSPHATE ESTERS, By GC/MS	3000	ND < 10	4	ND < 10

Submitted by:

Monsanto Industrial Chemicals Company Environmental Sciences Section - NIE 800 North Lindbergh Boulevard St. Louis, Missouri 63166

Prepared by:

Robert G. Kaley, II Research Group Leader

Approved by:

James P. Mieure

Manager, Environmental Sciences

E3-30-00-16 Page :

MEASUREMENT OF SELECTED CHEMICALS IN SOIL FROM THE DEAD CREEK SITE W. G. KRUMMRICH PLANT SAMPLINGS

INTRODUCTION

Following media reports and subsequent Illinois EPA concern about the hazardous chemicals at the Dead Creek site near Sauget, Illinois, personnel from Monsanto's W. G. Krummrich Plant sampled several areas at the site. Samples were submitted to Environmental Sciences for characterization. Monsanto's concerns about the site arose from reports of high levels of polychlorinated biphenyls and phosphorus, as well as the reported presence of other chemicals, and the proximity of the site to the Krummrich Plant. These samples were taken to give Monsanto opportunity to confirm the reported levels found in earlier samplings by the Illinois EPA. In addition to polychlorinated biphenyls and phosphorus, several other "families" of chemicals were measured to try to identify or eliminate possible sources of the chemicals at the site.

SUMMARY

Eight sediment samples were taken on August 29 (1), September 15 (2), and September 18 (5), 1980 by Monsanto W. G. Krummrich plant representatives. The samples were transferred to our laboratory for analysis. The samples were analyzed for polychlorinated biphenyls, elemental phosphorus, chlorobenzenes, chlorophenols, phosphate esters, and metals (including arsenic and inorganic phosphorus). No elemental phosphorus was detected in any of the samples, which implies that phosphorus is not responsible for the "smoking earth" reported at the site. Varying amounts of the organic chemicals and metals were measured in the soil samples. The results clearly indicate non-uniform contamination at the Dead Creek site.

DETAILS

Sampling

The eight soil samples were collected by Monsanto W. G. Krummrich plant personnel. The Monsanto samples were transferred to the Environmental Analysis Group. In our laboratory, the sediment samples were handled according to Standard Operating Procedure (SOP) EAN-80-SOP-6, Homogenizing, Subdividing and Preserving Sediment Samples. Portions of the soil samples were transferred to Applied Sciences for the determination of metals and arsenic.

Analytical Procedures

The eight soil samples were analyzed for a variety of chemicals using established procedures or methods developed and validated for the chemicals of interest in soil. The following list tabulates the methods which were used.

Analyte	Method No.	Title
Polychlorinated Biphenyls	ES-80-M-28	Determination of Polychlorinated Bipnenyls in Soil and Sediment
Chlorinated Benzenes	ES-80-M-29	Determination of Chlorinated Benzenes in Soil and Sediment
Chlorinated Phenols	ES-80-M-30	Determination of Chlorinated Phenols in Soil and Sediment
Elemental Phosphorus (P4)	ES-80-M-24	Determination of Elemental Phosphorus (P_{+}) in Soil and Sediment
Phosphate Esters	ES-80-M-5	Determination of Group I Compounds in Sediments
Metals	Ref. 1, 2	Inductively Coupled Plasma (ICP) Method for Trace Element Analysis of Water and Wastes
Arsenic	Ref. 3	Methods for Chemical Analysis of Water and Wastes - Arsenic

All determinations were carried out in strict accordance with these methods, except that the polychlorinated biphenyls, chlorinated benzenes and phosphate esters were measured in extracts from acidified samples to facilitate determination of chlorinated phenols in the same extracts.

Results

The analytical results for this study are tabulated in Tables I-VI. Each table contains the results for all of the samples for a specific group of compounds. All results for the soils are in ppm (parts per million or $\mu g/g$). In general, the stated detection limits are the lowest level at which a given measurement was validated. Levels which are apparently real, but which are below the validated detection limit are presented in parentheses.

Quality Assurance

The quality assurance results (i.e., recovery and precision evaluations) for these samples have been compiled along with those of similar samples analyzed concurrently. These results are reported in Special Study ES-80-SS-27, Measurement of Selected Chemicals in Soil from the Dead Creek Site - Quality Assurance.

REFERENCES

- 1. Methods for Chemical Analysis of Waters and Wastes, EPA-600/4-79-020, page: Metals 6, Section 4.1.3.
- 2. Federal Register, Vol. 44, No. 233, December 3, 1979.
- 3. Methods for Chemical Analysis of Waters and Wastes, EPA-600/4-79-320, Method 206 Arsenic, pages: 206.2-1 to 206.5-2.

ES LOG NO. DATE SAMPLED LOCATION	0091541 8/29/80 100' from Judith Ln.	0091542 9/15/80 North Start	0091543 9/15/80 300' from start	0091907 9/18/80 #9	0091908 9/18/80 #10	0091909 9/18/80 #11	0091911 9/18/80 #14	0041701 4/16/80 #15	Soil Blank Mo. Bottoms St.Charles,MO.
PCB's (Cl ₂ to Cl ₆ Homologs)	29	5000	190	4600	150	730.	400	280	ND<1
P4	ND<1	· ND<1	ND<)	ND<7	ND<1	ND<1	ND<1	ND<1	ND · 1

TABLE 1. PPN LEVELS OF PCBs AND ELEMENTAL PHOSPHORUS (P4) IN DEAD CREEK SOIL SAMPLES

TABLE II. PPM LEVELS OF CHLOROBENZENES IN DEAD CREEK SOIL SAMPLES

ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0091541 8/29/80 100' from Judith Ln.	0091542 9/15/80 North Start	0091543 9/15/80 300' from start	0091907 9/18/80 #9	0091908 9/18/80 #10	0091909 9/18/80 #11	0091910 9/18/80 #14	0091911 9/18/80 #15	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles.MC
MONOCHLOROBENZENE	NA	NA	NA	(0.9)	2.0	(0.2)	ND<1	(0.1)	ND~1
P-DICHLOROBENZENE	NA	NA	NA	34	4.0	3.4	2.5	(0.7)	ND-1
O-DICHLOROBENZENE	NA	NA	NA	14	(0.5)	1.1	2.3	(0.2)	ND-1
TRICHLOROBENZENES (3)	NA	NA.	NA	22	2.0	5.3	3.5	1.1	ND-1
FETRACHLOROBENZENES (3)	NA	NA	NA	4.0	(0.5)	2.1	(0.7)	(0.6)	ND<1
PENTACHLOROBENZENE	NA	NA	NA	ND<	ND<1	ND<1	ND<1	ND<1	ND~1
HEXACHLOROBENZENE	NA	NA	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND-1
NITROCHLOROBENZENES (0-, P-)	NA	NA	NA	ND<5	ND<1	1.2	ND<1	ND<1	ND<1

NA - Not Analyzed

^() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N > 2.5 and can be considered semi-quantitative.

ES LOG NO. DATE SAMPLED LOCATION ANALYTE	0091541 8/29/80 100' from Judith Ln.	0091542 9/15/80 North Start	0091543 9/15/80 300' from start	0091907 9/18/80 #9	0091908 9/18/80 #10	0091909 9/18/80 #11	0091910 9/18/80 #14	0091911 9/18/80 #15	0041701 4/16/80 Soil Blac Mo. Botto St.Charle
O-CHLOROPHENOL	NA	NA	ŇΑ	17	ND<1	1.7	ND<1	ND<1	ND<1
P-CHLOROPHENOL	NA ·	NA	NA	20	ND<1	1.7	1.4	ND<1	ND<1
2,4-D1CHLOROPHENOL	NA	· NA	NA	4.6	ND<1	ND<1	ND<1	ND<1	ND<1
PENTACHLOROPHENOL	NA	NA	NA	32	ND < 1	1.1	ND < 1	ND<1	ND<1

NA = Not analyzed

() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N >2.5 and can be considered semi-quantitative.

TABLE IV.	PPM LEVELS OF	PHOSPHATE	ESTERS	IN DEAD	CREEK S	SOIL	SAMPLES

ES LOC NO	0091541	0091542	0001542	0001007	0001000	0001000	0001010	0001011	0041701
ES LOG NO. DATE SAMPLED LOCATION	8/29/80 100' from	9/15/80 North Start	0091543 9/15/80 300' from	0091907 9/18/80 #9	0091908 9/18/80 #10	0091909 9/18/80 #11	0091910 9/18/80 #14	0091911 9/18/80 #15	0041701 4/16/80 Soil Blank Mo. Bottoms
ANALYTE	Judith Ln.		start	 					St.Charles,MO.
DIBUTYLPHENYL PHOSPHATE	ND<1	ND<100	ND<10	60	ND<1	ND<1	1.0	ND <1	ND < 1
BUTYLDIPHENYL PHOSPHATE	NA	NA	NA ·	ND<1	ND<1	ND<}	ND<1	ND<1	ND~1
TRIPHENYL PHOSPHATE	(0.3)	150	18	200	3.0	ND<1	ND<1	ND<1	ND<1
2-ETIIYLHEXYLDIPHENYL PHOSPHATE	3.5	17	11	ND<1	ND<1	1.0	(0.5)	ND < 1	ND<1
ISODECYLDIPHENYL PHOSPHATE	ND<1	ND<100	ND<10	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
T-BUTYLPHENYLDIPHENYL PHOSPHATE	ND<1	ND<100	ND<10	ND<1	ND<1	ND<1	ND<1	ND < 1	ND<1
DI-T-BUTYLPHENYLPHENYL PHOSPHATE	NA	NA	NA	ND<1	ND<1	ND<1	ND<1	ND < 1	ND<1
NONYLPHENYLDIPHENYL BY PHOSPHATE	ND<2	ND<200	ND<20	ND<1	1.0	ND<1	ND<1	ND<1	ND<1
CUMYLPHENYLDIPHENYL S PHOSPHATE S	ND<1	ND~100	ND<10	2.6	2.4	2.4	2.2	2.6	ND<1
NA - Not analyzed									•

^() Values in parentheses are below the validated detection limit. However, they represent levels detected with a S/N > 2.5 and can be considered semi-quantitative.

TABLE V. P	LEVELS OF META	TES IN DEAD Che	L. SO.L JAM	N							. .
ANALYTE	ES LOG NO. DATE SAMPLED LOCATION	0091541 8/29/80 100' from Judith Ln.	0091542 9/15/80 North Start	0091543 9/15/30 300' from start	0091907 9/18/80 #9				0091911 9/18/80 #15	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles,	MO.
SILVER		17	ND<1	3.3	ND < 1	20	20	19	4.2	ND<1	
ALUMINUM		2300	720	720	2700	2400	3100	3600	3900	5600	
BARTUM		210	2000	640	2400	230	940	1000	1100	120	φ
BERYLLIUM		ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND < 1	ND<1	ND<1	200
BURON		68	13	21	36	100	78	76	72	27	Protected
CALCIUM		2500	2700	2200	13,000	14,000	6200	9200	5600	4600	
CADMIUM		60	5.9	17	5.1	40	42	45	53	3.9	Material:
COBALT		67	8.2	13	30	120	85	89	81	33	-
CHROMIUM		44	19	61	29	88	110	130	51	19	
COPPER		25,000	2700	16,000	590	8900	13,000	12,000	14,000	19	9
IRON		24,000	2000	2600	8700	31,000	28,000	28,000	28,000	9900	Monsanto Insurance
MAGNESIUM		1000	400	310	1300	1700	1700	2400	2100	2300	Ē
MANGANESE		45	15	9,3	60	210	91	140	90	510	i ra
MOLYBDENUM		63	9.5	38	11	54	39	38	47	11	nce
SODIUM		350	690	710	420	510	400	440	360	320	ő
NICKEL		950	140	260	120	1100	900	1100	1400	39	Coverage
LEAD		1000	390	1400	150	1200	1000	1100	1500	50	
PHOSPHORUS		4400	770	2400	1900	7400	7000	6500	6700	610	Litigation
ANTIMONY		130	23 .	54	22	160	93	88	120	29	3 18 28
SILICON	4 C A	210	320	270	94	83	91	63	95	110	Ö
TIN	>	76	27	71	19	71	78	91	62	18	12.45
STRONTIUM	60	64	35	42	24	130	120	110	81	17	ти (); ф (); ф ()
TITANIUM	239	49	60	94	36	56	50	47	51	37	
MUTGANAA	4.	46	13	14	67	120	92	100	110	130	
ZINC		20,000	1400	5900	380	19,000	11,000	10,000	18,000	56	ij
ARSENIC (By A	M)	ΝΛ	NA	NA	130	50	90	50	30	5	

ANALYTE	ES LOG NO. DATE SAMPLED LOCATION	0091541 8/29/80 100' from Judith Ln.	0091542 9/15/80 North Start	0091543 9/15/80 300' from start	0091907 9/18/80 #9	0091908 9/18/80 #10	0091909 9/18/80 #11	0091910 9/18/80 #14	0091911 9/18/80 #15	0041701 4/16/80 Soil Blank Mo. Bottoms St.Charles.
P - ELEMENTAL, By GC/MS		ND<1	ND<1	ND <1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
P-INORGANIC, By ICP		4400	770 .	2400	1900	7400	7000	6500	6700	610
TOTAL PHOSPHATE ESTERS, By GC/MS	S	4	170	29	260	6.4	3.4	3.7	2.6	ND<10

TABLE VI. SUMMARY OF PHOSPHORUS CONTENT (PPM) OF DEAD CREEK SOIL SAMPLES

CA 0023943

Submitted by:

Monsanto Industrial Chemicals Company Environmental Sciences Section - NIE 800 North Lindbergh Boulevard St. Louis, Missouri 63166

Prepared by:

Robert G. Kaley, II & Research Group Leader

Approved by:

James P. Mieure

Manager, Environmental Sciences

MEASUREMENT OF SELECTED CHEMICALS IN SOIL FROM THE DEAD CREEK SITE -QUALITY ASSURANCE

INTRODUCTION

Following media reports and subsequent Illinois EPA concern about hazardous chemicals at the Dead Creek site near Sauget, Illinois, personnel from Monsanto's W. G. Krummrich Plant sampled several areas at the site. Samples were submitted to Environmental Sciences for analyses for polychlorinated biphenyls, elemental phosphorus, chlorinated benzenes, chlorinated phenols, phosphate esters, and metals. During the various determinations, replicates and spiked samples were analyzed to evaluate the performance of the method used for these particular samples.

SUMMARY

This report summarizes the quality assurance results obtained for various samples analyzed during the course of this project. The accuracy (recovery from spiked samples) and precision (relative standard deviation of replicate determinations) results are tabulated herein. Although it would be difficult to summarize the overall performance of the methods for all the analytes, in general, the methods performed at the recovery and precision levels established during method validation.

DETAILS

Analytical Methods

The soil samples were analyzed for the various chemicals using established procedures or methods developed and validated for the chemicals of interest in soil. The following list tabulates the methods which were used.

Analyte	Method No.	Title
Polychlorinated Biphenyls	ES-80-M-28	Determination of Polychlorinated Biphenyls in Soil and Sediment
Chlorinated Benzenes	ES-80-M-29	Determination of Chlorinated Benzenes in Soil and Sediment
Chlorinated Phenols	ES-80-M-30	Determination of Chlorinated Phenols in Soil and Sediment
Elemental Phosphorus (P ₊)	ES-80-M-24	Determination of Elemental Phosphorus (P4) in Soil and Sediment
Phosphate Esters	ES-80-M-5	Determination of Group I Compounds in Sediments
Metals	Ref. 1, 2	Inductively Coupled Plasma (ICP) Method for Trace Element Analysis of Water and Wastes
Arsenic	Ref. 3	Methods for Chemical Analysis of Water and Wastes - Arsenic MCA 0023945

All determinations were carried out in strict accordance with these methods, except that the polychlorinated biphenyls, chlorinated benzenes and phosphate esters were measured in extracts from acidified samples to facilitate determination of chlorinated phenols in the same extracts.

Results

The results for the determinations of the compounds of interest have been reported in Special Studies ES-80-SS-24, 25, and 26, Measurement of Selected Chemicals in Soil from the Dead Creek Site . . . This Special Study is a compilation of the quality assurance results for all three Special Studies.

Quality Assurance

The recovery and precision results for the determinations are tabulated in Tables I-V. Each table contains the results for all quality assurance samples for a specific group of compounds. Recovery results are reported as percent recovery, calculated as

Precision results are reported as percent relative standard deviation (RSD) for replicate determinations.

The tables present the recovery and precision results in concentration ranges (1-10 ppm to 10,000 - 100,000 ppm). The entries are averages of all values for all samples which had either recovery or precision evaluated in that range. All values are for actual samples except the metals recovery results, which are for spiked blank soil. In the recovery column, NE means Not Evaluated, i.e., no samples were spiked in that concentration range, and ND means Not Determinable, i.e., the spiking level was too low (usually <50%) compared to the level actually in the sample. In the precision columns, NE means Not Evaluated, i.e., no replicates were analyzed which contained the analyte in that concentration range.

More detailed compilations of the accuracy and precision results can be found in Reference 4.

REFERENCES

- 1. Methods for Chemical Analysis of Waters and Wastes, EPA-600/4-79-020, page: Metals 6, Section 4.1.3.
- 2. Federal Register, Vol. 44, No. 233, December 3, 1979.
- 3. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Method 206 Arsenic, pages: 206.2-1 to 206.5-2.
- 4. RGK NBP 1914831

TABLE 1. PCBs AND ELEMENTAL PHOSPHORUS (P4) IN DEAD CREEK SOIL SAMPLES	ELEMENTAL	PHOSPHORUS	(Pt) IN D	EAD CREE	K SOIL SAM	PLES				
ANAL YTE.	EVEL 1	LEVEL 1-10 ppm % Rec % RSD	10-100 ppm % Rec %RSD	D ppm	100-1,000 ppm % Rec %RSD	O ppm	1,000-1 % Rec	0,000 ppm %RSD	10,000-	1,000-10,000 ppm 10,000-100,000 ppm % Rec
PCB's (Cl ₂ to Cl ₆ Homologs)	QN	NE	70%	17%	120%	18%	37%	58%	Æ	7 0
3	799	. N	发	NE	NE	NE	Æ	NE	Ä	NE

MCA 0023947

IABLE 11. CHLOROBENZENES IN		DEAD CREEK SOIL SAMPLES				
	1-10 % Rec	ppni z RSD	10-100 % Rec	ppm % RSD	100-1,000 ppm % Rec % RSD	000
	105%	NE	110%	¥	100%	NE.
	120%	21%	125%	64%	120%	불
	125%	16%	120%	NE	120%	8%
	196	34.	110%	13%	120%	SE SE
_	10%	76	120%	NE	130%	S.
•	140%	12x	120%	NE	140%	Z
	135%	13%	3 06	NE	110%	¥
1	NITROCHLOROBENZENES (0-,P-)125%	37%	120%	NE	120%	26%

MCA 0023948

	100-1,000 ppm % Rec % RSD	NE	NE	뜋	20%
	100-1,	28%	30%	20%	39%
	ppm % RSD	NE.	NE	NE	Z.
	10-100 ppm % Rec % RSD	64%	16%	263	40%
SAMPLES					
REEK SOIL	1-10 ppm Rec % RSD	34%	26x	47%	46%
IN DEAD C	1-10 % Rec	36 1	36%	799	140%
TABLE 111. CHLOROPHENOLS IN DEAD CREEK SOIL SAMPLES	VINALYTE	O-CHLOROPHENOL	P-CHLOROPHENOL	2,4-DICHLOROPHENOL	PENTACIILOROPIIENOL

RECOVERY AND PRECISION

TABLE IV. PHOSPHATE ESTERS IN DEAD CREEK SOIL SAMPLES

/								
ANALYTE	1-10 % Rec) ppm % RSD	10-1(% Rec	10-100 ppm % Rec % RSD	100-1,0 % Rec	100-1,000 ppm % Rec	1,000-10,000 % Rec % RS	0,000 % RSD
DIBUTYLPHENYL PHOSPINTE	75%	NE	130%	NE	120%	12%	NE	NE
BUTYLDTPHENYL PHOSPHATE	120%	42%	115%	NE	¥	У	¥	¥
TRIPHENYL PHOSPHATE	120%	168	120%	뮢	115%	Æ	뿆	% 9
2-f Tiiylhexyldiphenyl Piiospiiate	206	47%	110%	Æ	115%	R	꾶	N.
I SODECYLD I PHENYL PHOSPHATE	NE	WE	Ä	¥	WE	NE NE	뿧	N
C-BUTYLPHENYLDIPHENYL PHOSPHATE	70%	뀰	326	100%	100%	NE	NE	N F
DI-1-BUTYLPHENYLPHENYL PHOSPHATE	88%	NE	%9 6	NE	¥	Ä	NE	NE
NONYL PHENYL PHOSPHATE	84%	38	292	NE	396	¥	NE	N N
CUMYL PHENYL DI PHENYL PHOSPHATE	2.29	21%	76%	Ä	88	NE NE	NE	N F

AC A

1568200

RECOVERY AND PRECISION

TABLE V.	METALS	ΙN	DEAD	CREEK	SOH	SAMPLES
----------	--------	----	------	-------	-----	---------

NALYTE LEV	/EL]-](% Rec	D PPM * RSD	1-10 % Rec	O ppm % RSD	100-1	,000 ppm % RSD		10,000 ppm		00,000 ppi
SILVER	NE	NE	NE	46%	NE NE		% Red		<u> % Rec</u>	Z RSD
N UMINUM	ND	NE	ND	NE	ND	NE	NE	NE S. S.W	NE	NE
BARTUM	ND	NE	ND			NE 27#	NE	6.5%	NE	NE
BERYLL FUM	98%	NE		NE	89%	37%	NE	0%	NE	NE
BORON	0%		98%	NE	94%	NE	NE	NE	NE	NE
CALC TUM		NE	65%	19%	81%	3%	NE	NE	NE	NE
	ND	NE 5 OH	ND	NE	ND	NE	NE	8.3%	NE	7.5%
ADMIUM	89%	5.2%	97%	21%	96%	NE	NE	NE	NE	NE
OBALT	51%	NE	115%	6.5%	97%	5.1%	NE	NE	NE	NE
HROM1 UM	27%	NE	109%	20%	91%	6.4%	NE	NE	NE	NE
OPPER	0%	NE	143%	66%	90%	NE	NE	NE	NE	11%
RON	ND	NE	ND	NE	ND	NE	NE	NE	NE	8.1%
AGNESTUM	ND	NE	ND	NE	ND	NE	NE	7.3%	NE	NE
ANGANESE	ND	NE	ND	13%	ND	10%	NE	NE	NE	NE
OLYBDENUM	53%	NE	83%	11%	83%	HE	NE	NE	NE	NE
MUTGO	ND	NE	ND	NE	ND	11%	NE	NE	NE	NE
ICKEL	0%	NE	108%	14%	91%	13%	NE	4.5%	NE	NE
ΕΛD	0%	NE	165%	21%	93%	NE	NE	6.5%	NE	NE
HOSPHORUS	ND	NE	ND	NE	ND	10%	NE	17%	NE	7.9%
NT IMONY	Oπ	NE	27%	2.9%	27%	13%	NE	NE	NE	NE
IL LCON	ND	NE .	ND	NE	0%	49%	NE	NE	NE	NE
IN ·	88%	NE	85%	5.6%	96%	5.4%	NE	NE	NE	NE
TRONT TUM	81%	NE	105%	3.3%	94%	6.5%	NE	NE	NE	NE
LIANTUM	ND	NE	99%	30%	30%	1.3%	NE	NE	NE	NE NE
ANADIUM	ND	NE	ND	13%	120%	11%	NE	NE	NE	NE NE
INC	ND	NE	139%	34%	87%	NE	NE	8.9%		
RSENIC (By AA)	NE	NE	NE	NE	NE	NE	ne Ne	NE	ne Ne	16% ,• NE

Submitted by:

Monsanto Industrial Chemicals Company Environmental Sciences Section - NIE 800 North Lindbergh Boulevard St. Louis, Missouri 63166

Prepared by:

Robert G. Kaley, IV Research Group Leader

Approved by:

James P. Mieure

Manager, Environmental Sciences

END

OF LOOSE

DOCUMENT

COLLECTION